CSCI5527: Deep Learning: Models, Computation, and Applications

3 Credits

This course introduces the basic ingredients of deep learning, describes effective models and computational principles, and samples important applications. Topics include universal approximation theorems, basics of numerical optimization, auto-differentiation, convolution neural networks, recurrent neural networks, generative neural networks, representation learning, and deep reinforcement learning. prereq: CSCI 5521 Maturity in linear algebra, calculus, and basic probability is assumed. Familiarity with Python is necessary to complete the homework assignments and final project.

View on University Catalog

All Instructors

A- Average (3.779)Most Common: A (56%)

This total also includes data from semesters with unknown instructors.

183 students
SWFDCBA
  • 3.27

    /5

    Recommend
  • 2.45

    /5

    Effort
  • 4.14

    /5

    Understanding
  • 3.62

    /5

    Interesting
  • 3.64

    /5

    Activities


  • Samyok Nepal

    Website/Infrastructure Lead

  • Kanishk Kacholia

    Backend/Data Lead

  • Joey McIndoo

    Feature Engineering

Contribute on our Github

Gopher Grades is maintained by Social Coding with data from Summer 2017 to Fall 2024 provided by the Office of Institutional Data and Research

Privacy Policy